On the combustion chemistry of n-heptane and n-butanol blends.

نویسندگان

  • Darshan M A Karwat
  • Scott W Wagnon
  • Margaret S Wooldridge
  • Charles K Westbrook
چکیده

High-speed gas sampling experiments to measure the intermediate products formed during fuel decomposition remain challenging yet important experimental objectives. This article presents new speciation data on two important fuel reference compounds, n-heptane and n-butanol, at practical thermodynamic conditions of 700 K and 9 atm, for stoichiometric fuel-to-oxygen ratios and a dilution of 5.64 (molar ratio of inert gases to O(2)), and at two blend ratios, 80%-20% and 50%-50% by mole of n-heptane and n-butanol, respectively. When compared against 100% n-heptane ignition results, the experimental data show that n-butanol slows the reactivity of n-heptane. In addition, speciation results of n-butanol concentrations show that n-heptane causes n-butanol to react at temperatures where n-butanol in isolation would not be considered reactive. The chemical kinetic mechanism developed for this work accurately predicts the trends observed for species such as carbon monoxide, methane, propane, 1-butene, and others. However, the mechanism predicts a higher amount of n-heptane consumed at the first stage of ignition compared to the experimental data. Consequently, many of the species concentration predictions show a sharp rise at the first stage of ignition, a trend that is not observed experimentally. An important discovery is that the presence of n-butanol reduces the measured concentrations of the large linear alkenes, including heptenes, hexenes, and pentenes, showing that the addition of n-butanol affects the fundamental chemical pathways of n-heptane during ignition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoignition Characterization of Primary Reference Fuels and n- Heptane/n-Butanol mixtures in a Constant Volume Combustion Device and Homogeneous Charge Compression Ignition Engine

Premixed or partially premixed compression ignition modes, such as homogeneous charge compression ignition (HCCI), have been a particular focus among researchers because of their potential to deliver enhanced fuel efficiency and meet exhaust emissions mandates without the addition of costly after-treatment technologies as currently required with traditional spark ignition (SI) and direct inject...

متن کامل

Autoignition of Binary Fuel Blends of n-Butanol and n-Heptane in a Rapid Compression Machine

Autoignition of binary blends of n-butanol and n-heptane was studied in a rapid compression machine at an equivalence ratio of 0.4 and a compressed pressure of 20 bar with the compressed temperature varying from 700 K to 907 K. Within the temperature range covered in this study, no cool flame or negative temperature coefficient behavior was observed for neat n-butanol. With the presence of n-he...

متن کامل

Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols

A reduced primary reference fuel (PRF)-alcohol-di-tert-butyl peroxide (DTBP) mechanism with 108 species and 435 reactions, including sub-mechanisms of PRF, methanol, ethanol, DTBP, and the four butanol isomers, is proposed for homogeneous charge compression ignition (HCCI) engine combustion simulations of butanol isomers/nheptane mixtures. HCCI experiments fueled with butanol isomer/n-heptane m...

متن کامل

Prediction and Comparison of the Effect of N-butanol and Ethanol Addition to the Biodiesel-diesel Fuel Mixture on the Performance and Emissions Characteristics of a Diesel Engine

The main objective of this research is to study the effects of n-butanol and ethanol addition to the biodiesel-diesel fuel mixture on the performance and emission characteristics of a CI engine. The experimental tests were performed on a diesel engine. The RSM (Response Surface Methodology) method was used to develop mathematical models based on experimental data. According to the results, the ...

متن کامل

Multi-Dimensional Simulation of n-Heptane Combustion under HCCI Engine Condition Using Detailed Chemical Kinetics

In this study, an in-house multi-dimensional code has been developed which simulates the combustion of n-heptane in a Homogeneous Charge Compression Ignition (HCCI) engine. It couples the flow field computations with detailed chemical kinetic scheme which involves the multi-reactions equations. A chemical kinetic scheme solver has been developed and coupled for solving the chemical reactions an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 116 51  شماره 

صفحات  -

تاریخ انتشار 2012